Prenatal Organophosphates Exposure Alternates the Cleavage Plane Orientation of Apical Neural Progenitor in Developing Neocortex
نویسندگان
چکیده
Prenatal organophosphate exposure elicits long-term brain cytoarchitecture and cognitive function impairments, but the mechanism underlying the onset and development of neural progenitors remain largely unclear. Using precise positioned brain slices, we observed an alternated cleavage plane bias that emerged in the mitotic neural progenitors of embryonal neocortex with diazinion (DZN) and chlorpyrifos (CPF) pretreatment. In comparison with the control, DZN and CPF treatment induced decrease of vertical orientation, increase of oblique orientation, and increase of horizontal orientation. That is, the cleavage plane orientation bias had been rotated from vertical to horizontal after DZN and CPF treatment. Meanwhile, general morphology and mitotic index of the progenitors were unchanged. Acephate (ACP), another common organophosphate, had no significant effects on the cleavage plane orientation, cell morphology and mitotic index. These results represent direct evidence for the toxicity mechanism in onset multiplication of neural progenitors.
منابع مشابه
Orienting Fate: Spatial Regulation of Neurogenic Divisions
Cleavage plane orientation has been thought to govern the fate of neural stem cell progeny, but supporting evidence in the neocortex has been sparse. A new study by Postiglione et al. in this issue of Neuron shows that mouse Inscuteable-mediated control of cleavage plane orientation regulates the output of neural progenitor cells.
متن کاملSpecific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division
Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and bas...
متن کاملDistinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis.
Neocortical precursor cells undergo symmetric and asymmetric divisions while producing large numbers of diverse cortical cell types. In Drosophila, cleavage plane orientation dictates the inheritance of fate-determinants and the symmetry of newborn daughter cells during neuroblast cell divisions. One model for predicting daughter cell fate in the mammalian neocortex is also based on cleavage pl...
متن کاملG protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors.
Neurons in the developing mammalian brain are generated from progenitor cells in the proliferative ventricular zone, and control of progenitor division is essential to produce the correct number of neurons during neurogenesis. Here we establish that Gbetagamma subunits of heterotrimeric G proteins are required for proper mitotic-spindle orientation of neural progenitors in the developing neocor...
متن کاملG Protein βγ Subunits and AGS3 Control Spindle Orientation and Asymmetric Cell Fate of Cerebral Cortical Progenitors
Neurons in the developing mammalian brain are generated from progenitor cells in the proliferative ventricular zone, and control of progenitor division is essential to produce the correct number of neurons during neurogenesis. Here we establish that G subunits of heterotrimeric G proteins are required for proper mitotic-spindle orientation of neural progenitors in the developing neocortex. Inte...
متن کامل